Security for Software Engineers

CSE435 – Fall 2025 – Guest Lecture Sol Zilberman

Overview

Why care about security?

- Most of our personal information is stored in software
 - Texts, Emails, Calls, Socials, Contacts, etc.
 - Photos (iCloud, Google Photos, etc.)
 - Medical records
 - E-commerce, Banking, Tax, Employment information
- Rely on external software systems
 - Power grids, healthcare, military/defense, transportation, etc.

Cyber attacks increasingly frequent

70,000 Discord users have their government IDs, IP addresses, billing info, and more exposed in data breach

Edited by: Top Class Actions | October 14, 2025

DATA BREACHES

Extortion Group Leaks Millions of Records From Salesforce Hacks

The data allegedly pertains to Albertsons, Engie Resources, Fujifilm, GAP, Qantas, and Vietnam Airlines.

October 13, 2025 (4:44 AM ET

Qantas data leak: Over 5 million customers affected as personal information shared on the dark web

By Liam Gilliver

Published on 14/10/2025 - 11:15 GMT+2

Was software security always considered?

- 1965: Networked computers enable researchers to share information (ARPNET)
- 1983: Official birthday of the internet (TCP/IP)
- 1989: WWW makes internet accessible (HTTP)

https://www.usg.edu/galileo/skills/unit07/internet07_02.phtml

1951. Univac I

1962. BRLESC I

1955. IBM 702

1990. First Web Server

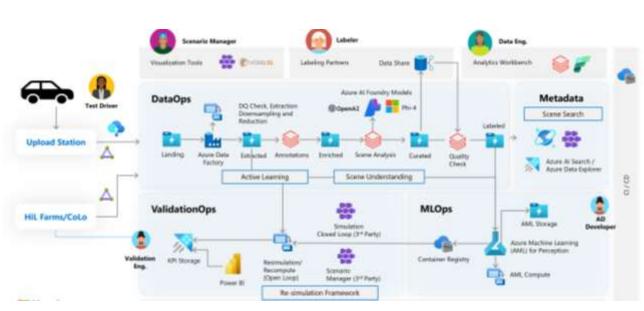
Towards cyber crime

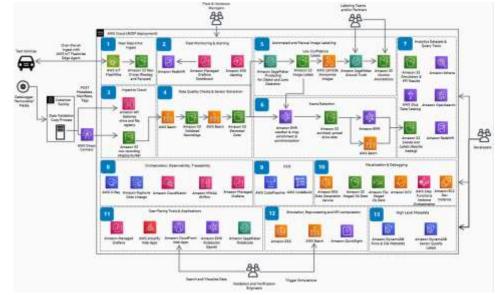
- 1986: Marcus Hess hacks 400 military computers, Pentagon; tries to sell info to KGB
- 1986: Congress passes the Computer Fraud and Abuse Act
- 1988: College student Robert Morris creates first worm;
 Crashes 10% of ARPNET, \$100k \$10M in damages

```
This Maria bissed Worm
(see a set of the content of
```

https://alumni.cornell.edu/cornellians/morris-worm/

Increased risks and cyber attacks


- 2000: ILOVEYOU virus released by CS student, infects 10M+ machines in ~2hr
- 2005: Albert Gonzalez steals 40M+ card #s from retailers
- 2010: Stuxnet virus used in military operation targeting reactors
- 2011: Organized groups like LulzSec launch large-scale cyber attacks; often politically motivated


LulzSec Logo

What makes security so challenging?

Developer must protect entire system; Attacker only needs one flaw

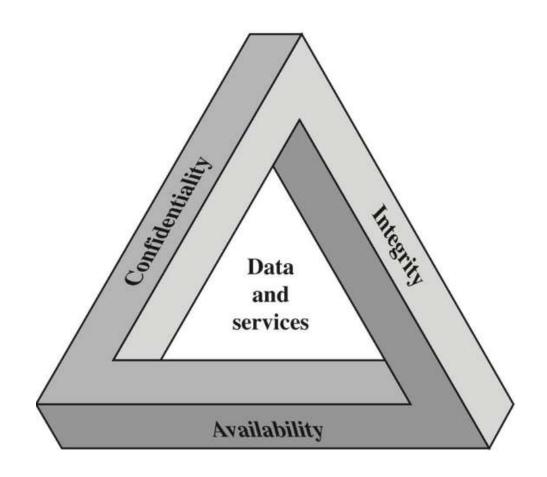
https://aws.amazon.com/solutions/guidance/autonomous-driving-data-framework-on-aws/

https://learn.microsoft.com/en-us/azure/architecture/solution-ideas/articles/avops-architecture

- Vulnerability: A flaw, weakness, area prone to attack in a system that can be exploited.
- Threat: A possible potential for violation of security. A danger that might exploit a vulnerability.
- Attack: The act of carrying out a threat, an exploit on the system that derives from a threat.

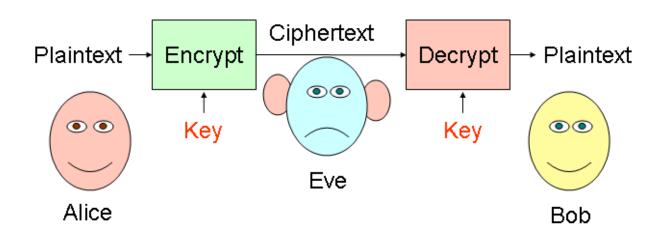
- Security Policy: The set of rules, practices, strategies, that specify or regulate how a system provides security services
- **Asset**: The part of a system that has the value. This can be something like the function of a system or data.

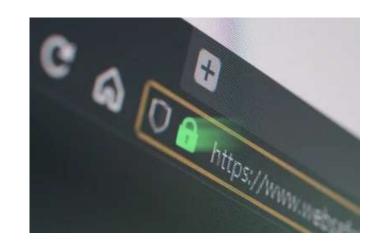
Computer security is the protection afforded to an automated information system in order to attain the applicable objective of preserving <security goals> of the system's resources [NIST]


A system will never be "perfectly secure"

As developer/organization, you decide what "secure" means to you

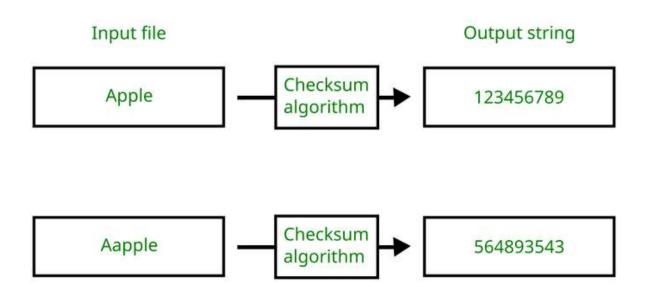
Security Goals


Confidentiality, Integrity, Availability (CIA Triad)



Security Goals: Confidentiality

Avoidance of the unauthorized disclosure of information.



Security Goals: Integrity

Information has not been altered in an unauthorized way.

Downloading VLC 3.0.6 for Windows

Thanks! Your download will start in few seconds...

If not, click here. SHA-256 checksum:

e75697cae485a9206a416aaa3b3eb18c9010056d1fcb53e3658be086c7080724

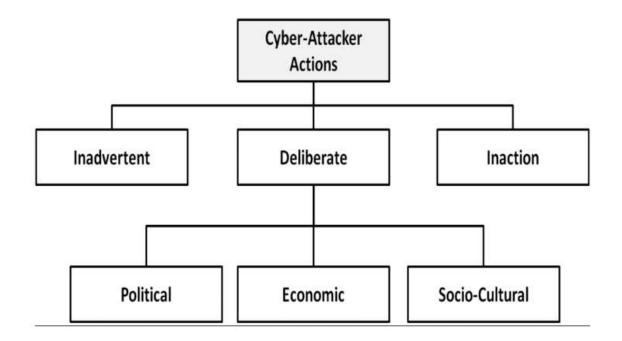
SHA256 hash of vlc-3.0.6-win32.exe:
e75697cae485a9206a416aaa3b3eb18c9010056d1fcb53e3658be086c7080724
CertUtil: -hashfile command completed successfully.

https://linuxsecurity.com/features/what-are-checksums-why-should-you-be-using-them

Security Goals: Availability

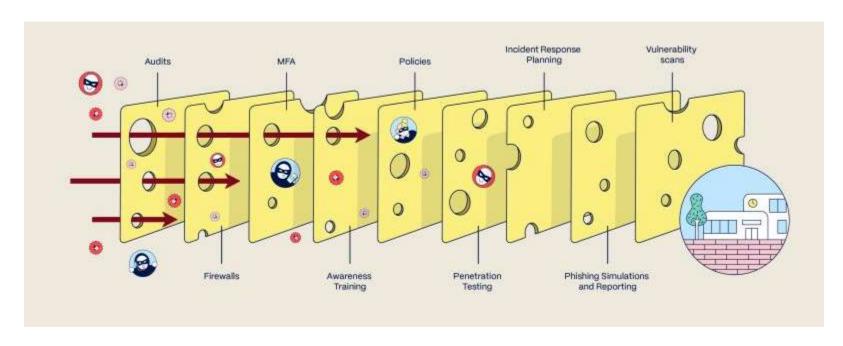
- Information is accessible and modifiable in a timely fashion by those authorized to do so
- What is the best way to "secure" some data?
 - Delete/destroy it...
- Challenge: provide security with minimum impact on usability

Security Practices


What can we do?

- Thinking like a defender
 - Know what you're defending, and against whom.
 - Weigh benefits vs. costs: No system is ever completely secure.
 - "Rational paranoia"
- Thinking like an attacker
 - Understand techniques for circumventing security
 - Look for ways security can break, not why it won't

Thinking like a Defender – Threat Modeling


- Who are the adversaries?
 - Motives, resources, etc.
- What kind of attacks should we be prepared for?

Thinking like a Defender – Best Practices

- Security Practices
 - Limiting what happens, who can make it happen, and how it happens

Thinking like an Attacker

- Identify weakest link
- Identify compromises/assumptions that security depends on
- Think outside the box

Security Threats

Threat: Injection

Software accepts and evaluates/executes user input;

```
1 # get user input
2 user_email = input("Enter your Email: ")
3 # build db query
4 query = f"SELECT * FROM Users WHERE Email = " + user_email
5 # get user info
6 res = db.execute(query)
7 # output query response
8 print(res)
```


Threat: SQL Injection

Table: Users

Email	UserId	Password
bob@msu.edu	123	Bob1#\$23
alice@msu.edu	456	alice!#2
hack3r@msu.edu	789	Hk3R&\$!


```
Input: "bob@msu.edu"
Query: "SELECT * FROM Users \
    WHERE \
    Email = 'bob@msu.edu'"
Output: "bob@msu.edu, 123, Bob1#$23"
```

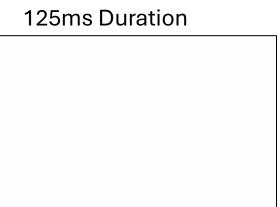
```
Input: "hack3r@msu.edu'or1=1"

Query: "SELECT * FROM Users \
          WHERE \
          Email = 'hack3r@msu.edu'or 1=1"

Output: ???
```


Threat: Injection – XSS Demo

- Cross-Site Scripting (XSS)
 - http://testphp.vulnweb.com/guestbook.php
 - <script>alert("hacked")</script>



Threat: Injection – Al & AVs

- Researches used drone to project "phantom" images in front of AVs
- Easily cause AVs to stop, even change lanes

https://www.nassiben.com/phantoms

Threat: Injection - Defense

- Never eval/execute arbitrary user input
- Use modern libraries with built-in escaping/sanitizing methods
- Pattern matching to reject malicious inputs
- Additional domain-specific defense mechanisms

Threat: DDOS and Botnets

- Distributed Denial of Service (DDOS) attack
- Flood service with dummy traffic to make it unavailable

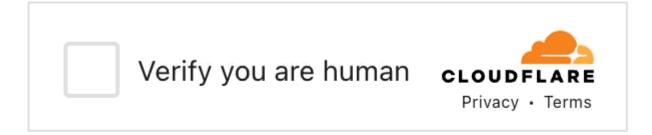
Cloudflare defenses autonomously block a 7.3 Tbps DDoS attack

New world record: 7.3 Tbps DDoS attack autonomously blocked by Cloudflare

https://blog.cloudflare.com/defending-the-internet-how-cloudflare-blocked-a-monumental-7-3-tbps-ddos/

Threat: DDOS and Botnets

"No ones going to target me"



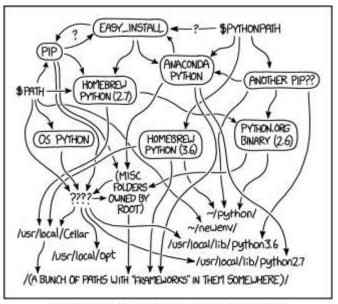
Threat: DDOS and Botnets - Defense

- Rate limiting access
- Dynamic load balancing
- Human Verification/Captcha

Threat: Virus & Ransomware

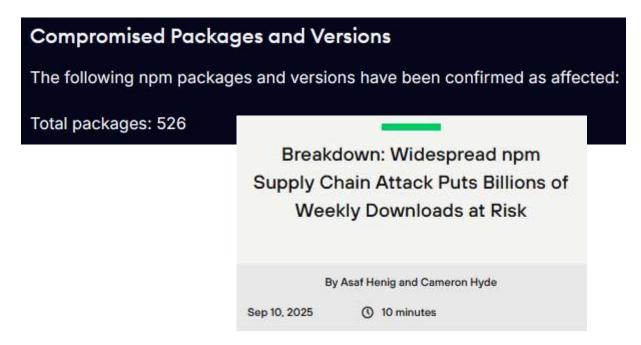
- Infects host and often attached to an executable (.exe file):
 - Cause damage to data or software
 - Can spread to other computers

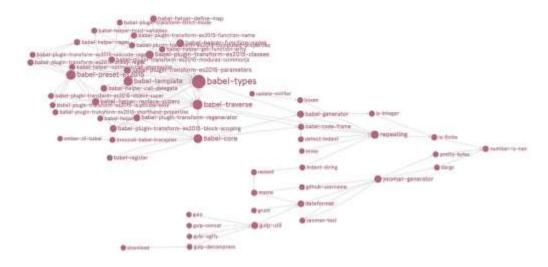
Threat: Virus - Defense


- Only run trusted executables, avoid downloading suspicious files
- Use malware scanners (e.g., virustotal) if unsure
- Use sandbox/VM for untrusted software
- Verify checksums if available

Threat: Supply Chain Attacks

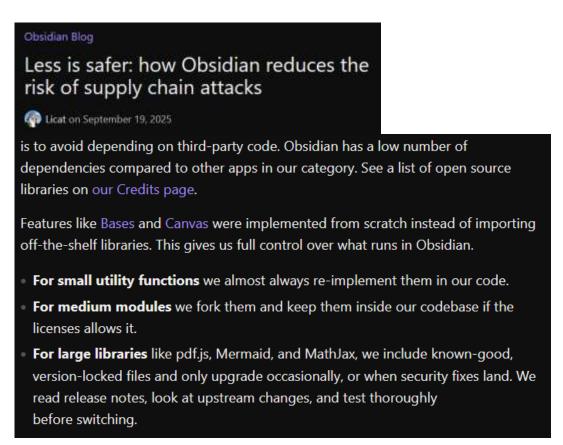
- Developers often install 3rd party packages
- Attacker hijacks package and injects exploit




MY PYTHON ENVIRONMENT HAS BECOME. SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Threat: Supply Chain Attacks

 Increasingly common as companies frequently leverage OSS in sensitive environments



Threat: Supply Chain Attacks - Defense

Minimize external dependencies; use trusted/stable versions

Threat: Social Engineering

- Even best security practices can fail because of human mistakes
 - Phishing
 - CEO Deep fakes
 - Insider threats

Social Engineering: Phishing

From: authenticationmail@trust.ameribank7.com

To: johnsmith@email.com

Subject: A new login to your bank account

Bank of America

Dear account holder,

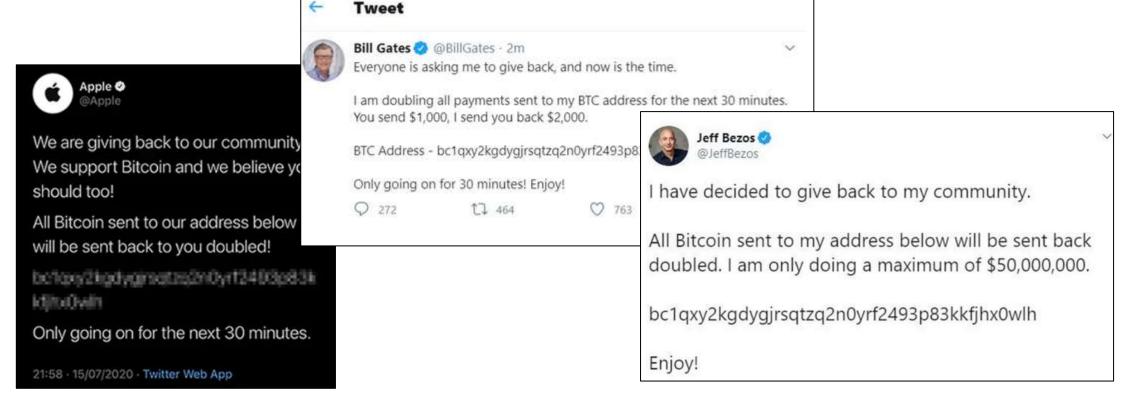
There has been a recent login to your bank account from a new divice:

IP address: 192.168.0.1 Location: Miami, Florida

4 new transactions have been made with this account since your last login.

If this was not you, please reset your password immediately with this link:

https://trust.ameribank7.com/reset-password


Thank you,

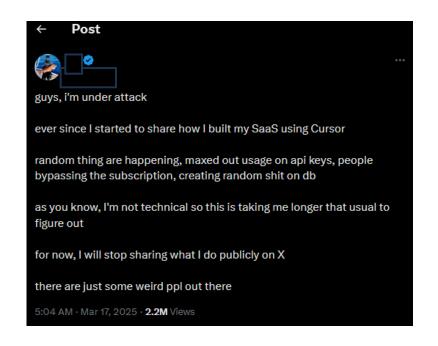
Bank America

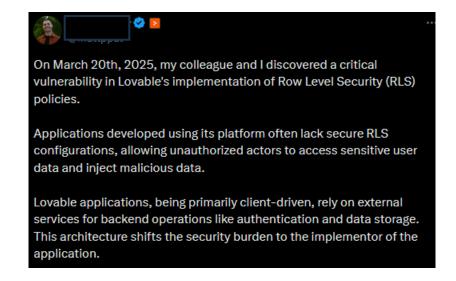
Threat: Social Engineering

Example: Sim Swapping

Threat: Social Engineering - Defense

- Robust access policies
- Employee education & training
 - E.g., how to detect phishing emails




Practical Cyber Security

Security and Vibe Coding

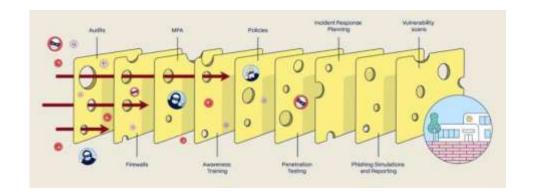
- Security vulns are difficult to spot
- LLM-generated code is often overly complex, re-implements existing methods, includes dozens of non-functional bugs

Vibe coders after sending Al code to production

Bug Bounty

- Many companies have bug bounty programs
- Ethical way to learn cybersecurity and can get paid

l1ackerone CO Doppler met Uniedle 0.1 (a) Plant Labor Bug Sounty Program Bug Bounty Program Values ability Dischasory Program Nieged by Hacker One, Colletonesso Triagaction Hacker One CoMposition Disease Cd Executable | 1 Antonid by Store | 1 SumaCole | 1 invigations is \$250 - \$10k (I) \$50 - \$15k @ This program their real offer hourists @ 44 Abr 27 + 82% O 641 als 201 - 10% \$ 1 Williams Textinologies Begillmarry Program Bug Tourty Program Bug Bookly Programs Dearth Telefor Pre. Brooks. Treadly Neterline Paradica. Trippellis HackerCris. Teruming. Salabaneting. Callaboration Donas H Dress 12: Decembe 1 Dense : 18 Androidal 1) linkpations (1) Autoditubors 8 MMCmd 8 Constant 4 Gold Standard \$290 - \$15k (D \$100 - 33a @ \$100 - \$155 ID-Ø ### 18 € £7% \$3. 16 this 108 - 17%. Ch see All the a well Sections


Cybersecurity Careers

- Governance, Risk & Compliance (GRC)
 - Policy, standards, risk, and regulatory alignment.
- Security Architecture
 - Designing secure systems, infrastructure, and controls.
- Threat Detection & Response
 - Blue Team, SOC, CIRT
- Offensive Security
 - Red Team, Pentester, etc.

Final Thoughts

- If your software takes user input or connected to internet, it is vulnerable to attacks
- Security should be considered from the start; not an afterthought
- No system will be perfectly secure; However, you can minimize risks with good security practices, policies, and response plans

References

- https://www.overtsoftware.com/computer-worms/
- https://faculty.kfupm.edu.sa/ics/alfy/files/teaching/151-SEC511/SEC511-Module02-Intro IAS.pdf
- https://www.cs.virginia.edu/~evans/dragoncrypto/day2.html
- https://cseweb.ucsd.edu/classes/wi21/cse127-a/slides/1-introduction.pdf
- http://testphp.vulnweb.com/login.php
- https://blog.cloudflare.com/defending-the-internet-how-cloudflare-blocked-a-monumental-7-3-tbpsddos/
- https://obsidian.md/blog/less-is-safer/
- https://www.prove.com/blog/secs-twitter-breach-illustrates-urgency-in-defending-against-sim-swapattacks
- https://hackerone.com/hacktivity/overview
- https://www.theguardian.com/technology/2013/may/16/lulzsec-hacking-fbi-jail
- https://mrcet.com/downloads/digital_notes/EEE/CyberSecurity.pdf
- https://www.nassiben.com/phantoms

